4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
热卖商品
新闻详情
Hochleistungswirkmasse für pyrotechnische Infrarotschein...
来自 : www.freepatentsonline.com/DE10 发布时间:2021-03-24

Die Erfindung betrifft eine Hochleistungswirkmasse für pyrotechnische Infrarotscheinziele.

Herkömmliche Scheinzielwirkmassen für Schwarzkörperstrahler basieren überwiegend auf einer Mischung aus Magnesium, Teflon und dem Fluorkautschuk Viton. Entsprechend der Bestandteile wird diese Wirkmasse MTV genannt. MTV ist eine der am stärksten strahlenden bekannten Wirkmassen.

Die für einige Scheinzieltypen geforderten Spezifikationen können mittels MTV als Wirkmasse nicht erfüllt werden, weil dessen spezifische Strahlungsleistung dafür zu gering ist. Ein weiterer mit der Verwendung von MTV als Scheinzielwirkmasse einhergehender Nachteil besteht darin, dass MTV beim Abbrand als sogenannter ”Punktstrahler” wirkt, weil die dabei entstehende Flamme kein großes Volumen einnimmt. Für einen mehrere Kilometer entfernten Suchkopf erscheint ein solches Ziel stets als Punkt. MTV ist damit nicht in der Lage, die Abgasfahne eines Flugzeugs nachzubilden und hat damit bei bildauflösenden Suchköpfen keine entsprechende Tauschwirkung.

Das Problem der nicht ausreichenden Strahlungsleistung von MTV wird üblicherweise dadurch gelöst, dass bei Scheinzielen ein größeres Kaliber gewählt wird, d. h. dass eine größere Masse an MTV verbrannt wird. Dies ist jedoch sowohl bei kinematischen Scheinzielen als auch bei angetriebenen Scheinzielen nachteilig, weil zum Beschleunigen der höheren Masse mehr Energie aufgewandt werden muss. Alternativ können auch mehrere MTV-Wirkmassen in Form von Salven gleichzeitig freigesetzt und gezündet werden.

Beim Abbrand großkalibriger MTV-Scheinziele oder gleichzeitigen Abbrand mehrerer MTV-Scheinziele wird bei einem bildauflösenden Suchkopf ein sogenannter Blooming-Effekt ausgelöst. Das bedeutet, dass der Suchkopf das Scheinziel bzw. die Scheinziele als sehr großen Gegenstand erfasst, weil die Detektoren einer Bilderfassungseinheit des Suchkopfs an der entsprechenden Stelle überlastet werden und auch benachbarte Detektoren ein falsches Signal erzeugen. Zur Täuschung von Suchköpfen sich daher Wirkmassen umso vorteilhafter, je mehr Strahlungsenergie sie emittieren, weil in diesem Fall auch punktförmige Scheinziele vom Suchkopf als große räumliche Strahlungsquellen wahrgenommen werden. Wenn dies mittels Salven von MTV-Scheinzielen oder großkalibrigen MTV-Scheinzielen bewirkt werden soll, wird für die Bereitstellung solcher Scheinziele viel Raum an Bord eines Flugzeugs oder Schiffs benötigt und es muss ein relativ hohes Gewicht befördert werden.

Aufgabe der vorliegenden Erfindung ist es daher, eine Wirkmasse für pyrotechnische Infrarotscheinziele bereitzustellen, welche leistungsfähiger ist als herkömmliches MTV.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Zweckmäßige Ausgestaltung ergeben sich aus den Merkmalen der Patentansprüche 2 bis 19.

Erfindungsgemäß ist eine Hochleistungswirkmasse für pyrotechnische Infrarotscheinziele umfassend einen ersten Brennstoff, mindestens einen zweiten Brennstoff, ein Oxidationsmittel und ein Bindemittel vorgesehen, wobei der erste Brennstoff und das Oxidationsmittel hinsichtlich ihrer Redoxpotentiale so gewählt sind, dass das Oxidationsmittel den ersten Brennstoff nach Zündung in einer exothermen Reaktion unter Entstehung einer Primärflamme und Emission von Infrarotstrahlung oxidieren kann, wobei der zweite Brennstoff bei der Reaktion entzündet, erhitzt und/oder pyrolysiert und aus der Hochleistungswirkmasse freigesetzt wird, wobei der zweite Brennstoff so gewählt ist, dass dessen Redoxpotential oder das Redoxpotential mindestens eines Pyrolyseprodukts des zweiten Brennstoffs höher ist als das Redoxpotential des ersten Brennstoffs und dass der erhitzte oder entzündete zweite Brennstoff oder das Pyrolyseprodukt an der Luft brennen kann, wobei die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels höchstens so groß ist, dass sie gerade ausreicht, um den ersten Brennstoff vollständig zu oxidieren.

Bei dem mindestens einen Pyrolyseprodukt kann es sich beispielsweise um Kohlenstoff handeln, wenn der zweite Brennstoff Steinkohle oder Holz ist, oder um Titan und Wasserstoff handeln, wenn der zweite Brennstoff Titanhydrid ist. Unter Pyrolyseprodukt wird hier insbesondere jedes Produkt verstanden, welches aus dem zweiten Brennstoff durch bloßes Erhitzen entsteht.

Unter Primärflamme wird hier eine Flamme verstanden, in der keine Reaktion mit Sauerstoff erfolgt, d. h. eine anaerobe Flamme. Unter Sekundärflamme eine wird hier eine Flamme verstanden, in der eine Reaktion mit Sauerstoff erfolgt, d. h. eine aerobe Flamme.

Ein Stoff wirkt umso stärker reduzierend, je niedriger sein Redoxpotential ist. Durch die unterschiedlichen Redoxpotentiale wird erreicht, dass beim Verbrennen der Hochleistungswirkmasse der erste Brennstoff mit dem Oxidationsmittel reagiert und der zweite Brennstoff oder das Pyrolyseprodukt entweder nicht mit dem Oxidationsmittel reagiert oder wenn er/es doch mit dem Oxidationsmittel reagieren sollte, das dabei entstehende Oxidationsprodukt durch den ersten Brennstoff in der Primärflamme wieder reduziert wird.

Der zweite Brennstoff oder das Pyrolyseprodukt können so erst außerhalb der anaeroben Primärflamme reagieren, wenn sie mit dem in der Luft vorhandenen Sauerstoff und/oder Stickstoff in Kontakt kommen. Dadurch entsteht eine aerobe Sekundärflamme. Durch das Entstehen einer Primärflamme und einer Sekundärflamme wird die IR-Strahlung emittierende Fläche vergrößert und dadurch die Strahlungsleistung erhöht.

Durch die starke Erhitzung des zweiten Brennstoffs oder des Pyrolyseprodukts in der Primärflamme wird dessen Reaktionsfähigkeit mit dem Sauerstoff und/oder Stickstoff der Luft stark erhöht, was eine heftige Reaktion bewirkt und dadurch zu einer Vergrößerung der Sekundärflamme beiträgt.

Die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels kann so bemessen sein, dass sie nicht ausreicht, um den ersten Brennstoff vollständig zu oxidieren. Dann entsteht eine weitere Zone der Sekundärflamme außerhalb der Primärflamme, in welcher der erste Brennstoff mit dem Luftsauerstoff reagiert und den Abbrand des schwächer reduzierenden zweiten Brennstoffs oder Pyrolyseprodukts hemmt. Erst außerhalb dieser Zone kann dann der zweite Brennstoff oder das Pyrolyseprodukt verbrennen. Dadurch wird eine weitere Vergrößerung der IR-Strahlung emittierenden Fläche der Flamme bewirkt. Außerdem wird auf diese Weise für dieselbe Strahlungsleistung weniger Oxidationsmittel benötigt, da der Luftsauerstoff als zusätzliches Oxidationsmittel genutzt wird.

Vorzugsweise wird jedoch die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels so bemessen, dass der Unterschuss an Oxidationsmittel im Verhältnis zum ersten Brennstoff nicht allzu groß ist. Dadurch wird die Abbrandrate, d. h. die Geschwindigkeit, mit der die Wirkmasse abbrennt, beschleunigt. Das liegt daran, dass die Primärflamme dadurch heißer wird und mehr Hitze auf die verbleibende Hochleistungswirkmasse zurückstrahlt. Dadurch ist es möglich, eine Wirkmasse bereitzustellen, welche beim Abbrand eine deutlich höhere Strahlungsleistung als MTV aufweist und schneller abbrennt als MTV. Weiterhin ist die Anzündbarkeit gegenüber MTV deutlich verbessert, weil nur ein Teil der Wirkmasse aufgeheizt werden muss, um ein Anzünden der Wirkmasse zu erreichen und weil der zweite Brennstoff beim Anzünden oft eher mit dem Oxidationsmittel reagiert als der erste Brennstoff. Anfänglich, d. h. beim Anzünden kann nämlich auch der zweite Brennstoff mit dem Oxidationsmittel reagieren. Sobald eine Flamme entsteht, wird jedoch der durch das Oxidationsmittel oxidierte zweite Brennstoff durch den ersten Brennstoff zum zweiten Brennstoff reduziert.

In einer vorteilhaften Ausgestaltung ist die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels so bemessen, dass die Zahl der vom gesamten Brennstoff in der Hochleistungswirkmasse in Redoxreaktionen abzugebenden Elektronen, die Zahl der Elektronen, die vom Oxidationsmittel aufgenommen werden können, mindestens um den Faktor 2, insbesondere mindestens um den Faktor 3, insbesondere mindestens um den Faktor 4, insbesondere mindestens um den Faktor 5, übersteigt. Dadurch kann die Energiedichte der Hochleistungswirkmasse weiter gesteigert werden.

Vorzugsweise ist die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels so bemessen, dass die Zahl der vom ersten Brennstoff in der Hochleistungswirkmasse in Redoxreaktionen abzugebenden Elektronen, die Zahl der Elektronen, die vom Oxidationsmittel aufgenommen werden können, mindestens um den Faktor 1,25, insbesondere mindestens um den Faktor 1,5, insbesondere mindestens um den Faktor 2,0, übersteigt. Dadurch wird neben der vom zweiten Brennstoff oder dem Pyrolyseprodukt gebildeten Zone der Sekundärflamme eine vom in der Primärflamme nicht umgesetzten ersten Brennstoff gebildete weitere Zone der Sekundärflamme erzeugt. Das vergrößert die abstrahlende Fläche der Flamme. Es ist jedoch zu beachten, dass die Temperatur der Primärflamme und damit deren Abstrahlung auf die noch abbrennende Hochleistungswirkmasse und damit auch die Abbrandrate umso geringer ist, je größer der genannte Faktor ist. Die Primärflamme ist umso heißer, je näher das Verhältnis von erstem Brennstoff zu Oxidationsmittel an einem stöchiometrischen Verhältnis liegt. Je nach Einsatzzweck können unterschiedliche Faktoren vorteilhaft sein.

Bei einer vorteilhaften Ausgestaltung der erfindungsgemäßen Hochleistungswirkmasse umfasst der erste Brennstoff ein Metall, eine Mischung aus Metallen oder eine Metalllegierung. Unter den Metallen finden sich geeignete erste Brennstoffe mit sehr negativem Redoxpotential, d. h. mit stark reduzierender Wirkung. Sehr vorteilhaft ist es, wenn der erste Brennstoff einen Siedepunkt aufweist, der unterhalb einer sich bei der Reaktion des ersten Brennstoffs mit dem Oxidationsmittel nach dessen Zündung einstellenden Reaktionstemperatur liegt. Dadurch verdampft der erste Brennstoff bei der Reaktionstemperatur. Der entstehende Brennstoffdampf schafft eine reduzierende Atmosphäre, die eine Reaktion des zweiten Brennstoffs verhindert und bereits oxidierten zweiten Brennstoff zum zweiten Brennstoff reduziert. Das Entstehen des Dampfs des ersten Brennstoffs verbreitert darüber hinaus die Primärflamme.

Der erste Brennstoff kann Magnesium, Calcium, Lithium, Aluminium oder eine Legierung oder Mischung aus mindestens zwei dieser Metalle umfassen. Davon sind Magnesium, Calcium und Lithium und Mischungen oder Legierungen aus diesen Metallen besonders gut zur Erzeugung eines Dampfs des ersten Brennstoffs geeignet.

Vorzugsweise umfasst der zweite Brennstoff Aluminium, Magnesium, Titan, Zirkonium, Hafnium, Calcium, Lithium, Niob, Wolfram, Mangan, Eisen, Nickel, Kobalt, Zink, Zinn, Blei, Wismut, eine Legierung oder Mischung aus mindestens zwei dieser Metalle, eine Zirkonium-Nickel-Legierung oder -Mischung, eine Aluminium-Magnesium-Legierung oder -Mischung, eine Lithium-Aluminium-Legierung oder -Mischung, eine Lithium-Silizium-Legierung oder -Mischung, eine Calcium-Aluminium-Legierung oder -Mischung, eine Eisen-Titan-Legierung oder -Mischung, eine Zirkonium-Titan-Legierung oder -Mischung, Bor, Titanhydrid, Zirkoniumhydrid, ein Borhydrid, Hafniumhydrid, ein Lithiumkomplexhydrid, elementaren Kohlenstoff, Blähgrafit, Steinkohle, Holzkohle, Braunkohle, Phosphor, Schwefel, Silizium, Sägemehl, Holz oder Kunststoff.

Besonders vorteilhaft ist es, wenn der zweite Brennstoff ein Metall, eine Mischung aus Metallen, eine Metalllegierung oder ein Metallhydrid umfasst. Metallhydride setzen bei Erwärmung durch die Primärflamme Wasserstoff und das Metall als Pyrolyseprodukte frei. Der entstehende Wasserstoff verbreitert die entstehende Flamme und bildet beim Abbrand eine zusätzliche Zone einer Sekundärflamme. Bei Metalllegierungen oder Mischungen aus Metallen enthaltenden erfindungsgemäßen Hochleistungswirkmassen können beim Abbrand neben den bereits genannten Reaktionen zusätzlich intermetallische Reaktionen und Festphasenreaktionen stattfinden, welche die Temperatur in der Hochleistungswirkmasse und der Flamme weiter steigern. Beispielsweise kann der erste Brennstoff Magnesium und der zweite Brennstoff eine Mischung oder Legierung aus Titan und Bor umfassen. Beim Abbrand dieser Wirkmasse brennt das Magnesium in der Primärflamme, das Titan in einer ersten Zone der Sekundärflamme und das Bor in einer weiteren Zone der Sekundärflamme. Zusätzlich reagieren Titan und Bor miteinander zu Titanborid. Diese Reaktion setzt sehr viel Wärme frei. Das Titanborid wird dadurch extrem heiß und strahlt effektiv bis es bei Kontakt mit Luft verbrennt und dabei noch mehr Strahlungsenergie freisetzt. Dadurch wird die strahlende Fläche der Flamme zusätzlich vergrößert.

Besonders vorteilhaft ist es, wenn der zweite Brennstoff einen Siedepunkt aufweist, der oberhalb einer sich bei der Reaktion des ersten Brennstoffs mit dem Oxidationsmittel nach dessen Zündung einstellenden Reaktionstemperatur liegt. Dadurch wird einerseits erreicht, dass in der anaeroben Primärflamme heiße Partikel aus zweitem Brennstoffs vorhanden sind, die als Schwarzkörperstrahler fungieren. Weiterhin fungieren die festen brennenden Teilchen in der aeroben Sekundärflamme als effektive Schwarzkörperstrahler. Die festen Teilchen des zweiten Brennstoffs strahlen dabei wesentlich effektiver als brennender Dampf, beispielsweise brennender Magnesiumdampf beim Abbrand von MTV.

Ein weiterer mit dem Vorhandensein fester Teilchen des zweiten Brennstoffs beim Abbrand einhergehender Vorteil besteht darin, dass die Wirkmasse beim Abbrand bei hoher Luftgeschwindigkeit weniger Leistungsverlust zeigt. Weiterhin entzieht ein zweiter Brennstoff, dessen Siedepunkt oberhalb der genannten Reaktionstemperatur liegt, der Reaktion des ersten Brennstoffs mit dem Oxidationsmittel keine Wärme durch Verdampfen. Dadurch wird die anaerobe Primärflamme heißer als beispielsweise bei MTV, bei dessen Abbrand nicht mit dem Oxidationsmittel reagierendes Magnesium verdampft wird. So kann beispielsweise mit Zirkonium als zweitem Brennstoff, dessen Siedepunkt oberhalb 4682 K liegt, bei ausreichender Energie eine Temperatur in der Primärflamme von bis zu 4682 K erreicht werden, während die Temperatur der Primärflamme beim Abbrand von MTV 1700 bis 1800 K nicht übersteigt.

Der erste Brennstoff und/oder der zweite Brennstoff können in Form von Partikeln vorliegen oder in Partikel enthalten sein. Die Partikel können eine unterschiedliche Größe, d. h. ein unterschiedliches Volumen, aufweisen. Ein Vorteil unterschiedlicher Größe der Partikel besteht darin, dass die größeren Partikel die mechanische Stabilität der Hochleistungswirkmasse erheblich erhöhen, da sie als mechanische Vernetzer, ähnlich wie Steine in Beton, wirken. Eine solche Vernetzungswirkung kann beispielsweise in Form grober Teilchen vorliegender Titanschwamm ausüben. Andererseits können sehr feine Partikel Lücken zwischen größeren Partikeln ausfüllen und dadurch die Energiedichte der Hochleistungswirkmasse erhöhen. Beispielsweise wird Bor häufig als sehr feines Pulver mit einer Partikelgröße unter 10 μm oder sogar unter 1 μm verkauft. Es kann dadurch Lücken zwischen größeren Magnesiumpartikeln ausfüllen. Ebenso wird Zirkoniumpulver üblicherweise mit einer sehr kleinen Körnung verkauft, so dass die Partikel in die Lücken zwischen größeren Partikeln passen.

Die den zweiten Brennstoff umfassenden Partikel weisen vorzugsweise ein größeres durchschnittliches Volumen auf als die den ersten Brennstoff umfassenden Partikel. auf. Dadurch kann, insbesondere beim Abbrand der Wirkmasse bei hoher Luftgeschwindigkeit, eine Raumwirkung erreicht werden. Unter Raumwirkung wird allgemein verstanden, dass ein Teil der Hochleistungswirkmasse nach deren Zündung außerhalb einer entstehenden Flamme IR-Strahlung emittiert.

Vorzugsweise weisen die den zweiten Brennstoff umfassenden Partikel eine Wärmeleitfähigkeit von mindestens 20 W/(m × K) auf. Dadurch können die zweiten Partikel den Abbrand der Hochleistungswirkmasse beschleunigen, indem sie Wärme von der aus dem Abbrand des ersten Brennstoffs resultierenden Primärflamme während des Abbrands in die noch nicht abgebrannte Hochleistungswirkmasse einleiten. Dies ist besonders effektiv, wenn die den zweiten Brennstoff umfassenden Partikel in Form von Streifen, Drahtstücken oder Spänen vorliegen.

Vorzugsweise sind die den zweiten Brennstoff umfassenden Partikel, zumindest an ihre Oberfläche, porös ausgebildet. Das verbessert deren Anzündbarkeit. Ist der zweite Brennstoff ein Metall oder eine Metalllegierung kann in Poren solcher Partikel ein festes Kohlenstofffluorid, insbesondere Polytetrafluorethylen (PTFE), ein fester Fluorkohlenwasserstoff oder ein sonstiges Oxidationsmittel, welches bei der Umsetzung mit dem zweiten Brennstoff Ruß bildet, enthalten sein. Dadurch wird eine sehr hohe Temperatur beim Abbrand der den zweiten Brennstoff umfassenden Partikel erreicht. Gleichzeitig erhöht der Ruß die Abstrahlung von Schwarzkörperstrahlung.

Der erste Brennstoff und der zweite Brennstoff können jeweils aus mindestens einem Metall bestehen, wobei der erste und der zweite Brennstoff zusammen in einer Legierung oder in einer, insbesondere homogenen, Mischung vorliegen. Handelt es sich bei dem ersten Brennstoff beispielsweise um Magnesium und bei dem zweiten Brennstoff um Aluminium und liegen diese Brennstoffe in Form einer Magnesium-Aluminium-Legierung vor, so verdampft bei der Reaktion des Magnesiums mit dem Oxidationsmittel das Magnesium, nicht jedoch das Aluminium, welches als zweiter Brennstoff freigesetzt wird.

Als Bindemittel hat sich ein Fluorelastomer, insbesondere ein Fluorkautschuk, wie beispielsweise ”Viton” von der Firma ”DuPont Performance Elastomere”, als günstig erwiesen. Alternativ kann auch Polychloropren als Bindemittel verwendet werden. Bei dem Oxidationsmittel handelt es sich vorzugsweise um ein halogenhaltiges Polymer, insbesondere Polytetrafluorethylen (PTFE) oder Kohlenstofffluorid.

Bei einer bevorzugten Ausgestaltung ist in der erfindungsgemäßen Hochleistungswirkmasse zur Beschleunigung des Abbrands ein Abbrandkatalysator, insbesondere Kupferftalocyanin oder Blähgrafit, enthalten.

Nachfolgend wird die Erfindung anhand von Zeichnungen und Ausführungsbeispielen näher erläutert. Es zeigen:

1 eine schematische Darstellung der Zonenverteilung einer beim Abbrand einer MTV-Wirkmasse entstehenden Flamme und

2 eine schematische Darstellung der Zonenverteilung einer beim Abbrand einer erfindungsgemäßen Hochleistungswirkmasse entstehenden Flamme.

1 zeigt die beim Abbrand einer aus MTV bestehenden Wirkmasse 10 entstehende Flamme. Dabei entsteht eine anaerobe Primärflamme 12, in welcher der beim Abbrand entstehende Magnesiumdampf mit dem Teflon reagiert. Da das Magnesium im Verhältnis zum Teflon im Überschuss vorliegt, reagiert der nicht mit dem Teflon reagierende Magnesiumdampf in einer aeroben Sekundärflamme 14 mit dem Sauerstoff der Luft. Sowohl in der Primärflamme 12 als auch in der Sekundärflamme 14 entsteht sehr viel Ruß. Die Abbrandprodukte 18 enthalten abkühlende Reaktionsprodukte, wie Rauch, Ruß und Nebel.

2 zeigt die beim Abbrand einer erfindungsgemäßen Hochleistungswirkmasse 11 entstehende Flamme. Die Hochleistungswirkmasse 11 enthält im Verhältnis zum Oxidationsmittel einen Überschuss an erstem Brennstoff. Beim Abbrand entsteht eine Primärflamme 12, in der das Oxidationsmittel vollständig mit dem ersten Brennstoff reagiert. Gegebenenfalls mit dem Oxidationsmittel reagierender zweiter Brennstoff wird in der Primärflamme 12 durch den ersten Brennstoff auf Grund von dessen niedrigerem Redoxpotential sofort zu zweitem Brennstoff reduziert. In der ersten Zone der Sekundärflamme 15 reagiert der nicht in der Primärflamme 12 umgesetzte erste Brennstoff mit dem Sauerstoff der Luft. Auf Grund des niedrigeren Redoxpotentials des ersten Brennstoffs reagiert hier nur der erste Brennstoff mit dem Sauerstoff. Der zweite Brennstoff reagiert in der zweiten Zone der Sekundärflamme 16 mit dem Luftsauerstoff. Die Abbrandprodukte 18 enthalten abkühlende Reaktionsprodukte, wie Rauch, Ruß und Nebel. Durch das Vorhandensein des zweiten Brennstoffs wird das Volumen der gesamten Flamme und damit die IR-Strahlung abgebende Fläche gegenüber der beim Abbrand einer MTV-Wirkmasse entstehenden Flamme deutlich vergrößert.

Aus sämtlichen der im Folgenden angegebenen Zusammensetzungen wurden jeweils fünf Tabletten mit ca. 21 mm Durchmesser und einem Gewicht von 10 g bei einem Pressdruck von 1500 bar gepresst. Als erster Brennstoff wurde dabei jeweils Magnesium, bezogen von der Fa. Ecka Granulate GmbH Co. KG, Fürth, Deutschland, eingesetzt. Im Falle des Beispiels 5 liegt Magnesium in einer Legierung mit dem zweiten Brennstoff Aluminium im Verhältnis 50/50 (bezogen auf die Masse) vor. Auch die Legierung wurde von der Fa. Ecka Granulate GmbH Co. KG bezogen. Die durchschnittliche Körnung der Magnesiumpartikel war etwa 50 μm. Das Kupferftalocyanin und das Ferrocen diente jeweils als Abbrandkatalysator und das Guanidinazotetrazolat (GZT) zur Vergrößerung der Primärflamme. Sofern nicht anders angegebenen, wurde das Titan von der Fa. Tropag Oscar H. Ritter Nachf. GmbH, Hamburg, Deutschland bezogen. Die Tabletten wurden abgebrannt und deren Leistung in Form von Strahlungsleistung mit einem Radiometer bestimmt. Die spezifische Leistung wurde im Verhältnis zur Leistung von Tabletten aus MTV als Standard bestimmt. Die Energie wurde jeweils in Joule/(g/sr) im A-Band, d. h. bei einer Wellenlänge von ca. 1,8 bis 2,6 μm, und im B-Band, d. h. bei einer Wellenlänge von ca. 3,5 bis 4,6 μm, im Standversuch, d. h. ohne Wind, gemessen. Das A-Band und das B-Band sind die Wellenlängen, die von herkömmlichen Suchköpfen erfasst werden.

Alle Daten sind in fünf parallelen Messreihen jeweils im Vergleich zu MTV mit dem Radiometer in einem Abstand von 1 m gemessen worden. Das Radiometer wurde zuvor gegen eine Schwarzkörperstrahlerquelle bei 1273 K und einer Apertur von 22,2 mm bei einem Abstand von 0,4 m kalibriert, um absolute spezifische Strahlungsenergien in Joule pro Steradian (sr) und Gramm zu ermitteln. Wirkmasse nach dem Stand der Technik:StoffTypGewichtprozentMagnesiumLNR 6160,0TeflonpulverHoechst TF 920223,0Viton3M Fluorel FC-217512,0GrafitpulverMerck5,0

Es handelt sich bei dieser Schwarzkörperwirkmasse um das als Standard eingesetzte MTV. Die Wirkmasse verbrennt mit einer Abbrandrate von 4,4 mm/s. Beispiel 1:StoffTypGewichtprozentMagnesiumLNR 6148,0GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217512,0TitanpulverSphärisch, Körnung 100 μm20,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid. Grobkörniges sphärisches Titan dient als zweiter Brennstoff. Die Wirkmasse verbrennt mit einer Abbrandrate von 3,3 mm/s. Beispiel 2:StoffTypGewichtprozentMagnesiumLNR 6148,0GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217512,0TitanpulverSphärisch, Körnung 45 μm20,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid. Feinkörniges sphärisches Titan dient als zweiter Brennstoff. Die Wirkmasse verbrennt mit einer Abbrandrate von 3,3 mm/s. Beispiel 3:StoffTypGewichtprozentMagnesiumLNR 6148,0GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217512,0TitanSvenska kemi, Körnung 100 μm20,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff. Das Titan liegt als bimodales Pulver, d. h. als Pulver, von dem 30% eine Körnung von 15 μm und 70% eine Körnung von 100 μm aufweisen, vor. Die Wirkmasse verbrennt mit einer Abbrandrate von 3,6 mm/s. Beispiel 4:StoffTypGewichtprozentMagnesiumLNR 6148,0GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,9Steinkohle, HaushaltsqualitätKörnung 1,0 mm20,0KupferftalocyaninBASF Vossenblau0,1

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit feinkörnigem Steinkohlegranulat. Die Wirkmasse erzeugt auch eine Raumwirkung, d. h. sie emittiert durch aus der Hochleistungswirkmasse freigesetzte Steinkohlepartikel auch außerhalb der Flamme IR-Strahlung. Die Steinkohle fungiert hier im Wesentlichen als Quelle für Kohlenstoff, der hier als Pyrolyseprodukt des zweiten Brennstoffs entsteht und die Flamme verbreitert. Die Steinkohle in Haushaltsqualität enthält jedoch auch ca. 60% flüchtige, sehr kohlenstoffreiche aromatische Stoffe, die in der entstehenden Flamme feinen Ruß erzeugen, der eine extrem hohe Strahlungsleistung bewirkt. Die Abbrandrate beträgt 2,5 mm/s. Beispiel 5:StoffTypGewichtprozentMgAlEcka MX 01160,0TeflonpulverHoechst TF 920225,0Viton3M Fluorel FC-217515,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Teflon mit Aluminium als zweitem Brennstoff. Der zweite Brennstoff liegt hier jedoch in einer Legierung mit dem ersten Brennstoff Magnesium in einem Gewichtsverhältnis von 50/50 vor. Statt der Legierung könnte hier auch ein homogenes Gemisch von Magnesium und Aluminium eingesetzt werden. Beim Abbrand dieser Hochleistungswirkmasse verdampft zunächst das Magnesium und das Aluminium, dessen Siedetemperatur beim Abbrand nicht erreicht wird, wird aus der Hochleistungswirkmasse freigesetzt. Die Abbrandrate beträgt 2,8 mm/s. Beispiel 6:StoffTypGewichtprozentMagnesiumLNR 6145,0GrafitfluoridSigma-Aldrich19,0SteinkohleHaushaltsqualität, Körnung 1,0 mm18,0Viton3M Fluorel FC-217511,9Guanidinazotetrazolat (GZT)Eigensynthese6,0KupferftalocyaninBASF Vossenblau0,1

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid und Steinkohle als zweiten Brennstoff. GZT dient als Flammenverbreiterungsmittel. Die Abbrandrate beträgt 2,7 mm/s. Beispiel 7:StoffTypGewichtprozentMagnesiumLNR 6147,5GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5BorKörnung: 1 μm13,0TitanSvenska kemi, Körnung: 250–425 μm7,0KupferftalocyaninBASF Vossenblau1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Bor als weiterem zweiten Brennstoff. Diese Wirkmasse brennt besonders schnell. Die Abbrandrate beträgt 8,0 mm/s. Beispiel 8:StoffTypGewichtprozentMagnesiumLNR 6121,8GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,2BorKörnung: 1 μm30,7TitanChemetall Typ E trocken15,3FerrocenArapahoe Chemicals1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Bor als weiterem zweiten Brennstoff. Die mit dieser Wirkmasse gemessene spezifische Strahlungsleistung ist fast identisch mit der spezifischen Strahlungsleistung der Hochleistungswirkmasse gemäß Beispiel 7. Die Wirkmasse enthält jedoch weniger Magnesium. Dadurch wird die reduzierende Primärflamme kleiner und der zweite Brennstoff und der weitere zweite Brennstoff werden früher umgesetzt. Daher ist die spezifisch Strahlungsleistung beim Abbrand trotz erheblich höherer Energiedichte als bei der Wirkmasse gemäß Beispiel 7 nicht höher als bei dieser Wirkmasse. Die Abbrandrate beträgt nur 4,7 mm/s. Dies zeigt, dass die Energiedichte einer Wirkmasse weniger wichtig ist als die ideale Verteilung der Zonen der Flamme. Beispiel 9:StoffTypGewichtprozentMagnesiumLNR 6139,8GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,2BorKörnung: 1 μm20,7TitanSvenska kemi, Körnung: 250–425 μm7,3FerrocenArapahoe Chemicals1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Bor als weiterem zweiten Brennstoff. Die Zonenverteilung in der Flamme wurde optimiert. Die Energiedichte dieser Wirkmasse ist geringer als die Energiedichte der Wirkmasse gemäß Beispiel 8. Dennoch weist sie beim Abbrand eine sehr viel höhere spezifische Strahlungsleistung auf als diese. Die Abbrandrate beträgt 7,4 mm/s. Beispiel 10:StoffTypGewichtprozentMagnesiumLNR 6147,5GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5TitanhydridChemetall GmbH13,0TitanSvenska kemi, Körnung: 250–425 μm7,0KupferftalocyaninBASF Vossenblau1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Titanhydrid als weiterem zweiten Brennstoff. Aus Titanhydrid entstehen bei der Erwärmung durch die Primärflamme Titan und Wasserstoff. Die Wirkmasse ist sehr leistungsstark. Die Abbrandrate beträgt 3,2 mm/s. Beispiel 11:StoffTypGewichtprozentMagnesiumLNR 6147,5GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5ZirkoniumhydridChemetall GmbH13,0TitanSvenska kemi, Körnung: 250–425 μm7,0KupferftalocyaninBASF Vossenblau1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Zirkoniumhydrid als weiterem zweiten Brennstoff. Aus Zirkoniumhydrid entstehen bei der Erwärmung durch die Primärflamme Zirkonium und Wasserstoff. Die beim Abbrand entstehende Flamme weist vier Zonen auf: Eine Primärflamme, in welcher Magnesium verbrennt, eine erste Zone der Sekundärflamme, in der Titan verbrennt, eine zweite Zone der Sekundärflamme, in der Zirkonium verbrennt, und eine dritte Zone der Sekundärflamme, in der Wasserstoff verbrennt. Die Wirkmasse ist sehr leistungsstark. Die Abbrandrate beträgt 5,0 mm/s. Beispiel 12:StoffTypGewichtprozentMagnesiumLNR 6147,5GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5Zirkonium-Nickel50/50 Degussa13,0TitanSvenska kemi, Körnung: 250–425 μm7,0KupferftalocyaninBASF Vossenblau1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff, Zirkonium als weiterem zweiten Brennstoff und Nickel als zusätzlichem zweiten Brennstoff. Zirkonium und Nickel liegen in einer Legierung in einem Massenverhältnis von 50/50 vor. Die beim Verbrennen der Wirkmasse entstehende Flamme weist vier Zonen auf: Eine Primärflamme, in der Magnesium verbrennt, eine erste Zone der Sekundärflamme, in der Titan verbrennt, eine zweite Zone der Sekundärflamme, in der Zirkonium verbrennt, und eine dritte Zone der Sekundärflamme, in der Nickel verbrennt. Die Wirkmasse ist sehr leistungsstark. Die Abbrandrate beträgt 4,3 mm/s. Beispiel 13:StoffTypGewichtprozentMagnesiumLNR 6147,5GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5BlähgrafitNGS Naturgraphit GmbH, Ex 180 SC, grobkörnig13,0TitanSvenska kemi, Körnung: 250–425 μm7,0KupferftalocyaninBASF Vossenblau1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff und Blähgrafit bzw. Kohlenstoff als weiterem zweiten Brennstoff. Bei Blähgrafit handelt es sich um Grafit, bei dem zwischen die Kohlenstoff-Schichten Atome oder kleine Moleküle eingelagert sind. Blähgrafit dehnt sich bei Beaufschlagung mit Wärme stark aus. Die Wirkmasse ist sehr leistungsstark. Die Abbrandrate beträgt 5,8 mm/s. Der Blähgrafit bewirkt eine zusätzliche Raumwirkung. Beispiel 14:StoffTypGewichtprozentMagnesiumLNR 6120,2GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217512,8BorKörnung: 1 μm15,7TitanhydridChemetall GmbH15,3BlähgrafitNGS Naturgraphit GmbH, grobkörnig15,0FerrocenArapahoe Chemicals1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff, Bor als weiterem zweiten Brennstoff, Titanhydrid als zusätzlichem zweiten Brennstoff und Kohlenstoff als weiterem zusätzlichen zweiten Brennstoff. Aus Titanhydrid entstehen bei der Erwärmung durch die Primärflamme Titan und Wasserstoff. Die Wirkmasse zeigt beim Abbrand eine Flamme mit fünf Zonen: In einer Primärflamme verbrennt Magnesium, in einer ersten Zone der Sekundärflamme Titan, in einer zweiten Zone der Sekundärflamme Bor, in einer dritten Zone der Sekundärflamme Wasserstoff und in einer vierten Zone der Sekundärflamme Kohlenstoff. Die Wirkmasse ist relativ leistungsstark. Der Blähgrafit bewirkt zusätzlich eine Raumwirkung. Die Wirkmasse brennt verhältnismäßig langsam ab. Die Abbrandrate beträgt 1,8 mm/s. Beispiel 15:StoffTypGewichtprozentMagnesiumLNR 6140,0GrafitfluoridSigma-Aldrich20,0Viton3M Fluorel FC-217511,5BorKörnung: 1 μm10,0TitanSvenska kemi, Körnung: 250–425 μm7,5BlähgrafitNGS Naturgraphit GmbH, feinkörnig10,0FerrocenArapahoe Chemicals1,0

Es handelt sich bei dieser Hochleistungswirkmasse um eine Schwarzkörperwirkmasse auf Basis von Grafitfluorid mit Titan als zweitem Brennstoff, Bor als weiterem zweiten Brennstoff und Kohlenstoff als zusätzlichem zweiten Brennstoff. Beim Abbrand zeigt die Wirkmasse eine Flamme mit vier Zonen: In einer Primärflamme verbrennt Magnesium, in einer ersten Zone der Sekundärflamme Titan, in einer zweiten Zone der Sekundärflamme Bor und in einer dritten Zone der Sekundärflamme Kohlenstoff. Die Wirkmasse ist relativ leistungsstark. Der Blähgrafit verursacht zusätzlich eine Raumwirkung. Die Wirkmasse brennt sehr schnell ab. Die Abbrandrate beträgt 7,2 mm/s.

Messergebnis der Strahlungsmessungen:

Es wurden jeweils 5 Messreihen durchgeführt. Alle angegebenen Werte wurden für jede Messreihe separat ermittelt und berechnet. Die angegebenen Werte sind Durchschnittswerte der für jede Messreihe ermittelten Werte. ”Ea” bezeichnet dabei die im A-Band (ca. 1,8–2,6 μm) und ”Eb” die im B-Band (ca. 3,5–4,6 μm) gemessene spezifische Leistung in J/(gsr). ”% MTV” gibt die Summe der spezifischen Leistungen im A-Band und im B-Band in Prozent der für MTV gemessenen spezifischen Leistung an. WirkmasseEa/(J/(gsr))Eb/(J/(gsr))(Ea + Eb)/(J/(gsr))Eb/Ea% MTVMTV166822480.496100Beispiel 13121574690.506178Beispiel 23131564690.500178Beispiel 32191413610.646145Beispiel 43151774920.562198Beispiel 52181033220.474122Beispiel 62931884820.641188Beispiel 72121353470.635140Beispiel 82071373440.661139Beispiel 93082045120.662207Beispiel 102121393510.654141Beispiel 112061333390.645137Beispiel 121831213040.659123Beispiel 131631202830.735114Beispiel 141541262800.816113Beispiel 151851303150.705127

Bezugszeichenliste

10Wirkmasse11Hochleistungswirkmasse12Primärflamme14Sekundärflamme15erste Zone der Sekundärflamme16zweite Zone der Sekundärflamme18Abbrandprodukte

本文链接: http://tropagoscar.immuno-online.com/view-683551.html

发布于 : 2021-03-24 阅读(0)
公司介绍
品牌分类
联络我们
服务热线:4000-520-616
(限工作日9:00-18:00)
QQ :1570468124
手机:18915418616